
Applications of Virtual Screening

using High-Throughput Docking

Basel Computational Biology Conference 2004

E. Vangrevelinghe, Molecular & Library Informatics, Novartis Institutes for BioMedical Research, Basel, Switzerland

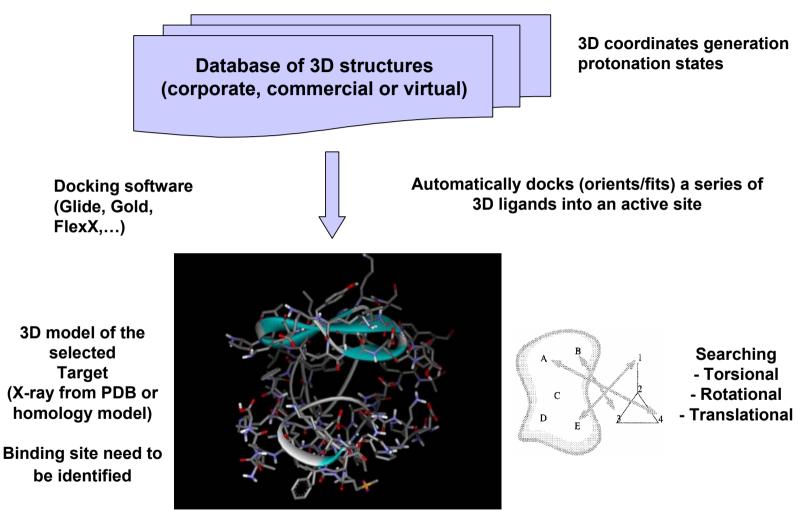
Introduction

 Advances in genomics have resulted in a large increase in the number of potential therapeutic targets

- Hundred fold increase in biological screening data did not lead to correspondent increase in productivity (New Chemical Entities)
 - Need for new concepts and techniques to balance quantity and quality
 - In silico screening, and in particular High-Throughput Docking (HTD), can be used to optimize screening performance and to identify lead candidates among large collections of 3D molecular structures

Definitions

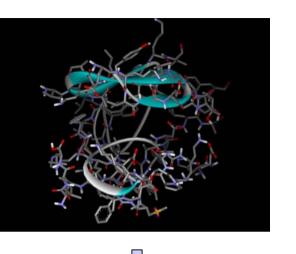
in silico Screening


"The selection of compounds by the evaluation of their desirability in a computational model."

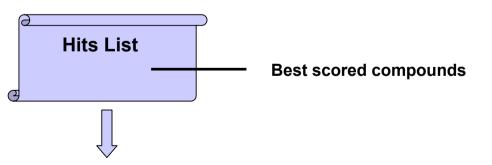
High Throughput Docking (HTD)

"A computational process that predicts quickly the binding mode and estimates binding affinity of a large number of ligands to a target receptor."

HTD workflow 1/2

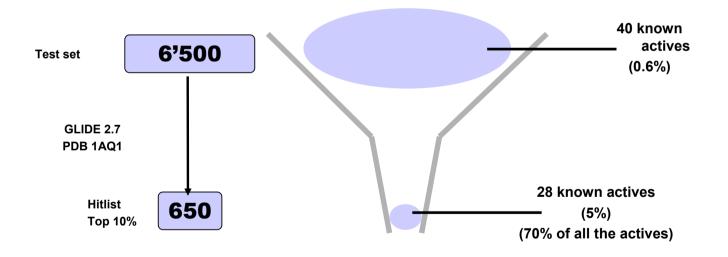

U NOVARTIS

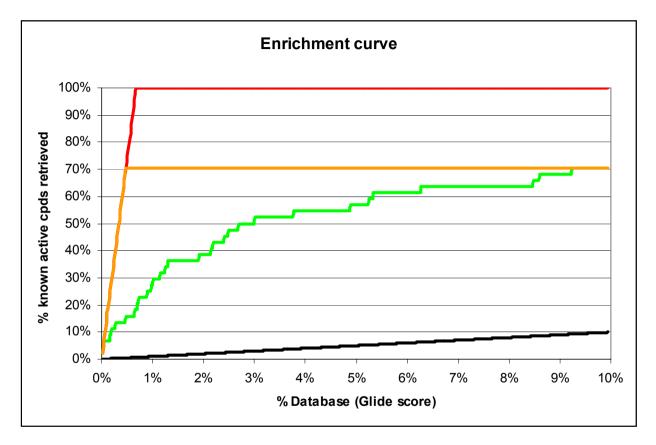
4


HTD workflow 2/2

Scoring function Force field (DOCK) Empirical (Chemscore) Knowledge (Drugscore)

- Hydrogen Bond
- Ionic Interaction
- Hydrophobic Interaction
- Entropy Terms

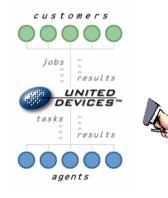

A scoring function is used to quantitatively rank the ligands according to binding affinity


Compound selection / Biochemical assays

Example

- Test case on CDK2
 - 6'460 compounds (randomly selected from ACD)
 - > 40 known active compounds (chemically diverse)

Example


Enrichment factor is 20 in the Top 2%

Recent improvements

- "Relatively" new technology (DOCK by Kuntz et al in 1982)
 - more accurate algorithms
 - Improvements in the accuracy of the scoring functions
 - Dramatic increases in computer power

Grid Computing

- most desktop CPUs are idle most of the time
- aggregate power of these idle resources

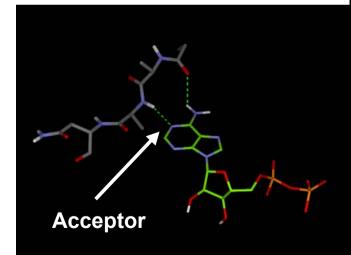
UNOVARTIS

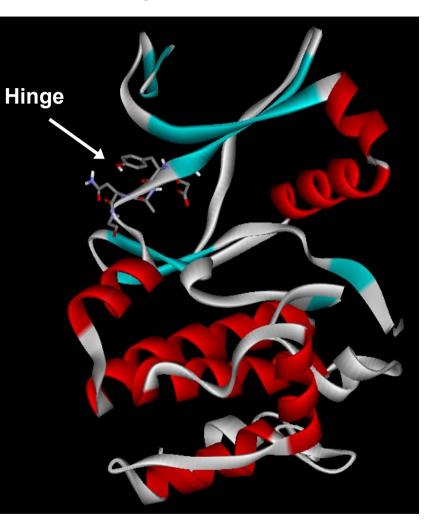
Linux Cluster

Limitations of the HTD method

- 3D structure of the target
 - X-ray model or good homology model (may be validated by docking)
- Rigid receptor assumption
 - Possibility to use several different conformations of the binding site
- Scoring function weaknesses
 - Possibility to use several scoring functions
 - Targets with a flat binding pocket are more difficult
 - knowledge
- HTD hits need to be confirmed
 - A binding assay should be available
 - And/or NMR, MS, X-ray

Limitations of the HTD method

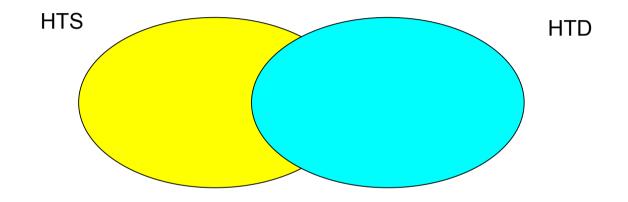

- 3D structure of the target
 - X-ray model or good homology model (may be validated by docking)
- Rigid receptor assumption
 - Possibility to use several different conformations of the binding site
- Scoring function weaknesses
 - Possibility to use several scoring functions
 - Targets with a flat binding pocket are more difficult
 - knowledge
- HTD hits need to be confirmed
 - A binding assay should be available
 - And/or NMR, MS, X-ray



Example of knowledge : Protein kinase family

Hydrogen bonding to the hinge segment is a key determinant of binding affinity to the ATP pocket of protein kinases

This interaction is present in almost all the available X-ray crystal structures of inhibitor-kinase complexes



U NOVARTIS

HTS vs HTD hits

These two approaches are complementary

- Strong binders are generally found
- Compounds consuming
- Expensive
- Assay format suitable for HTS
- Low rate of false negatives

- Possibility to have access to weak binders
- Low cost method
- Easy to set up
- 3D structure of the target needed
- High rate of false negatives/positives

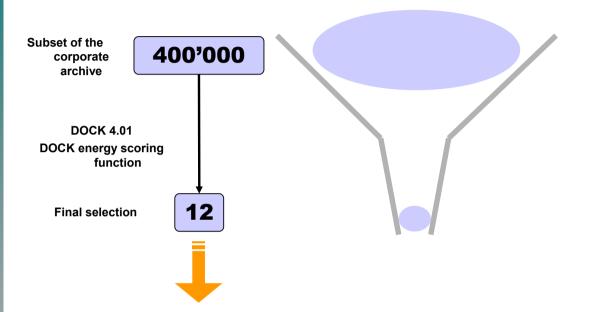
U NOVARTIS

HTS experiment unavailable

- Difficult or impossible to set up
- Explanatory project
- In addition to HTS
 - Follow-up of HTS (virtual screen of recently added libraries)
- In parallel with HTS
 - Enrich HTS hit list with hits found in silico
- Virtual screening of compounds not available in-house
 - Commercial compounds
 - Virtual compounds (easily accessible, e.g. by combinatorial chemistry)

HTS experiment unavailable

- Difficult or impossible to set up
- Explanatory project
- In addition to HTS
 - Follow-up of HTS (virtual screen of recently added libraries)
- In parallel with HTS
 - Enrich HTS hit list with hits found in silico
- Virtual screening of compounds not available in-house
 - Commercial compounds
 - Virtual compounds (easily accessible, e.g. by combinatorial chemistry)


CK2 - Target

Protein kinase CK2 (casein kinase II)

- Potential therapeutic target in oncology
- Potent and selective small molecule inhibitor required
- X-ray unavailable
- Homology model of Human CK2 possible
 - > 72% sequence identity with Zea Mays CK2
 - > 82% sequence identity considering the ATP binding site

Zea mays	34	YEVVRK V GRGKYSE V FEGINVNNNEKC IIK ILKPVKKKKIKR E IKI L QNLCGGPNIVKLLDIVRDQHSKTPS LIFEYVNNTD FKVLYPTLTDYDIRYYIY
		XX X X XXX X X X X X X X X X X X X X X
Human	39	YQLVRK l GRGKYSE V FEAINITNNEKV VVK ILKPVKKKKIKR E IKI L ENLRGGPNIITLADIVKDPVSRTPA LVFEHVNNTD FKQLYQTLTDYDIRFYMY
Zea mays	134	ELLKALDYCHSQGIMHRDVKP HNVM IDHELRKLRL IDW GLAEFYHPGKEYNVRVASRYFKGPELLVDLQDYDYSLDMWSLGCMFAGMIFRKEPFFYGHDN
		x x X X x XX xx x
Human	139	EILKALDYCHSMGIMHRDVKP HNVM IDHEHRKLRL IDW GLAEFYHPGQEYNVRVASRYFKGPELLVDYQMYDYSLDMWSLGCMLASMIFRKEPFFHGHDN
Zea mays	234	HDQLVKIAKVLGTDGLNVYLNKYRIELDPQLEALVGRHSRKPWLKFMNADNQHLVSPEAIDFLDKLLRYDHQERLTALEAMTHPYF
		X X XX XX X XXXXXX X XX XXXX X X X X X
Human	239	$\verb+YDQLVR1AKVLGTEDLYDY1DKYN1ELDPRFND1LGRHSRKRWERFVHSENQHLVSPEALDFLDKLLRYDHQSRLTAREAMEHPYF$

CK2 - HTD Experiment

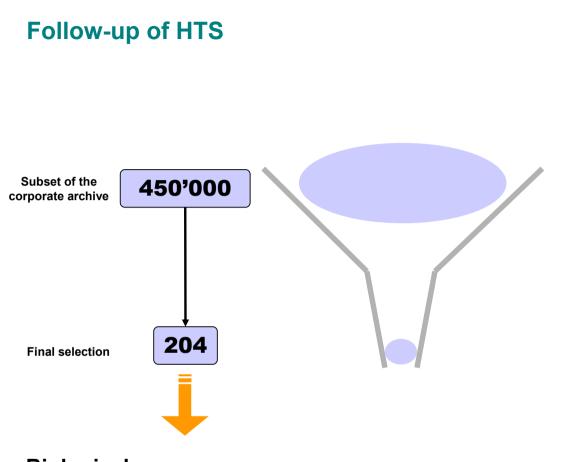
CK2 phosphorylation inhibition assay

- 4 compounds have % inhibition value > 50 @10µM
- Belong to different chemical classes
- Most potent has an IC_{50} value of 80nM and was most potent inhibitor of the CK2 kinase ever reported (J. Med. Chem. 46, 2656–2662)

HTS experiment unavailable

- Difficult or impossible to set up
- Explanatory project
- In addition to HTS

Follow-up of HTS (virtual screen of recently added libraries)

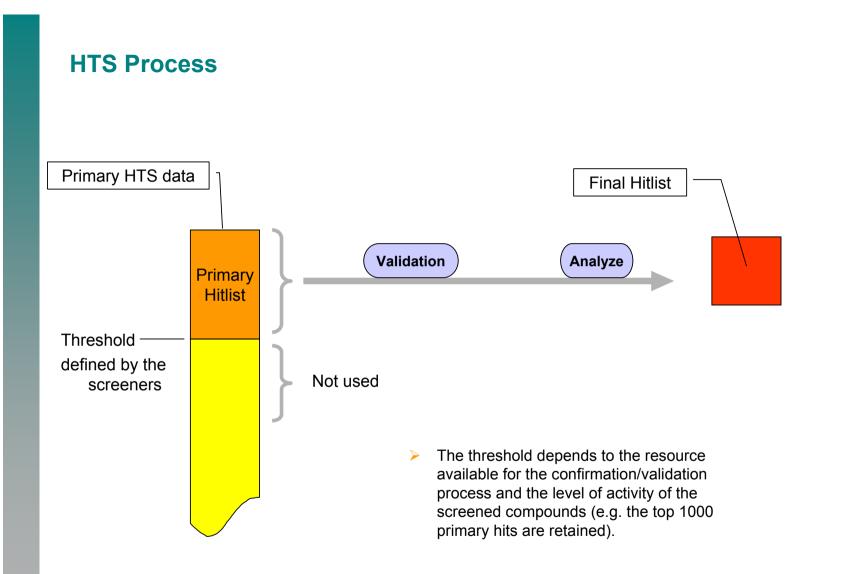

- In parallel with HTS
 - Enrich HTS hit list with hits found in silico
- Virtual screening of compounds not available in-house
 - Commercial compounds
 - Virtual compounds (easily accessible, e.g. by combinatorial chemistry)

Backup lead compound needed in a medicinal project

- HTS performed several years ago
- X-ray structure not available but homology model possible
 - > HTD allows to virtually screen compounds not already screen by HTS

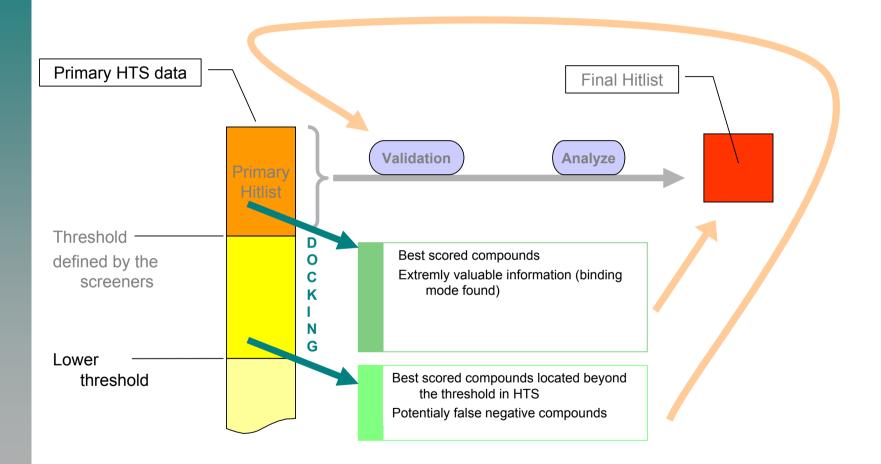
Biological assay

- 33 compounds found to be active
- 16 different chemical classes
- follow-up chemistry initiated

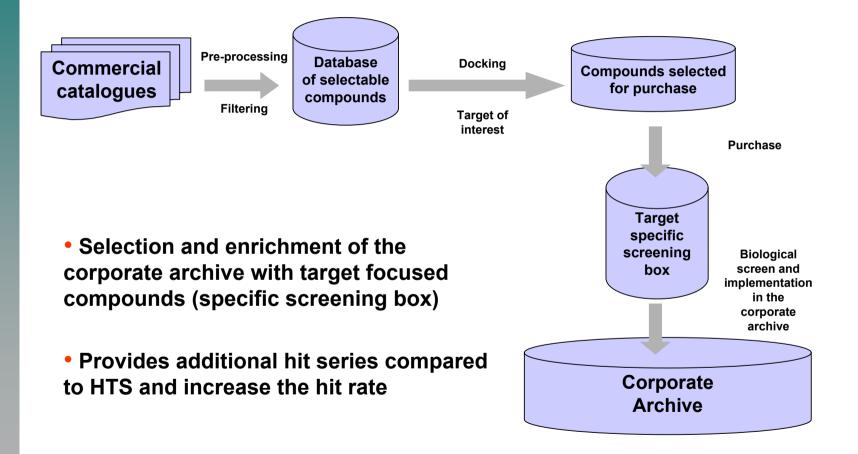

HTS experiment unavailable

- Difficult or impossible to set up
- Explanatory project
- In addition to HTS
 - Follow-up of HTS (virtual screen of recently added libraries)
- In parallel with HTS
 - Enrich HTS hit list with hits found in silico

Virtual screening of compounds not available in-house


- Commercial compounds
- Virtual compounds (easily accessible, e.g. by combinatorial chemistry)

Combined HTS and HTD Process

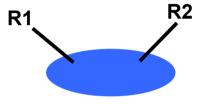


U NOVARTIS

HTS experiment unavailable

- Difficult or impossible to set up
- Explanatory project
- In addition to HTS
 - Follow-up of HTS (virtual screen of recently added libraries)
- In parallel with HTS
 - Enrich HTS hit list with hits found in silico
- Virtual screening of compounds not available in-house
 - Commercial compounds
 - Virtual compounds (easily accessible, e.g. by combinatorial chemistry)

Commercial compounds screening


UNOVARTIS

HTS experiment unavailable

- Difficult or impossible to set up
- Explanatory project
- In addition to HTS
 - Follow-up of HTS (virtual screen of recently added libraries)
- In parallel with HTS
 - Enrich HTS hit list with hits found in silico
- Virtual screening of compounds not available in-house
 - Commercial compounds
 - Virtual compounds (easily accessible, e.g. by combinatorial chemistry)

Virtual compounds screening

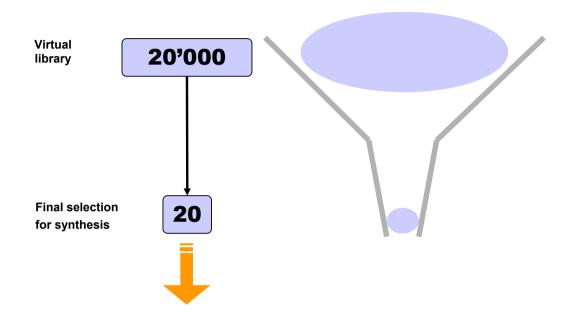
- Structure assisted optimization of leads
- Targeted Combinatorial Chemistry
- Evaluation of synthetically accessible libraries around a given lead
 - Identify feasible synthetic routes
 - Assemble list of relevant available reagents
 - Build virtual library by attaching reagents to scaffold
 - Evaluate virtual library by docking into target binding site
- Can be done iteratively

E. Vangrevelinghe, [BC]², Basel, March 2004

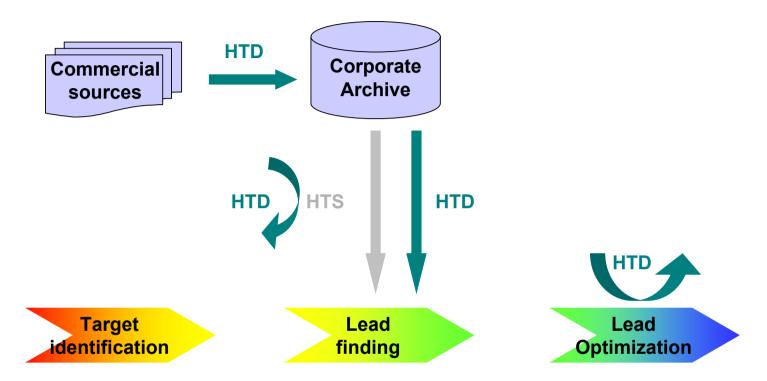
Virtual library Screening

Need to improve affinity and ADME profile of a lead in a medicinal project

A part of the structure is conserved •


 Virtual library created by coupling the conserved part and all the reagents easily available

Virtual library Screening



Synthesis / Biological assay

- 4 compounds found to be active
- 1 has contributed to the discovery of a new lead compound with improved affinity and ADME profile

Summary

High-Throughput Docking can make significant contributions to the lead discovery process.

UNOVARTIS

Acknowledgements

Kaspar Zimmermann Joseph Schoepfer Robert Portmann Doriano Fabbro Pascal Furet Alain Dietrich Armin Widmer Kamal Azzaoui Ansgar Schuffenhauer Maxim Popov Edgar Jacoby Pierre Acklin

