

Pharmacokinetic Modeling & Simulation in Discovery and non-clinical Development

Where do we stand?

P. Theil, Non-clinical Safety, Roche

- Pharmaceutica
- I am not a bioinformatician, mathematician or biomedical engineer.
- I am a simple minded pharmacist, who enjoys the challenge of pharmacokinetics and pharmacodynamics.

Pharmacokinetic M&S in Discovery and non-clinical Development

Pharmaceuticals

Desktop Drug Discovery – Pharma companies turn to computer simulations to complement experimentation and trial design. A. Constans

in Scientist 18 (2004) 4, 33

"Imagine being able to discover the latest blockbuster drug using nothing but a PC and some highly sophisticated software. It is not as far-fetched as it sounds." ????

P. Theil, Non-clinical Safety, Roche

P. Theil, Non-clinical Safety, Roche

Potential DMPK data – in-silico, in-vitro, in-vivo data

<u>Ultimate Goal:</u>

To predict the concentration-effectrelationship(s) in man,

Ideally in the target population

Pharmaceuticals

P. Theil, Non-clinical Safety, Roche

Suggested integrated PBPK modeling (Theil et. al. Toxicol. Letters 138 (2003) 29-49) Ionization Solubility Lipophilicity Permeability Protein binding Metabolic stability Absorbability Tissue Plasma / Blood Distribution (Kp) Metabolism (CLh) Absorption Elimination Concentration-time profile(s) in plasma and tissue prior to

in-vivo experiments (PBPK modeling)

P. Theil, Non-clinical Safety, Roche

Computational Biology – Basel 2004

Pharmaceuti

Suggested integrated PBPK modeling

(Theil et. al. Toxicol. Letters 138 (2003) 29-49)

P. Theil, Non-clinical Safety, Roche

Partition coefficients of volatile organic chemicals

<u>The left Plateau</u>: Water_fraction in tissue / Water_fraction in plasma

<u>The right Plateau</u>: Lipid_fraction in tissue / Lipid_fraction in plasma

J. deJongh et al. Arch. Toxicol. 72 (1997) 17

P. Theil, Non-clinical Safety, Roche

P. Theil, Non-clinical Safety, Roche

Vss Modeling and Validation with an internal data set (n=21)

Input:

<u>Physiology</u>: Tissue composition data

<u>Compound information</u>: Lipophilicity, protein binding, pKa

Output:

P_{T:P}, Volume of distribution (Vss)

P. Theil, Non-clinical Safety, Roche

Vss Modeling and Validation with an external data set (n=123)

harmaceut

P. Theil, Non-clinical Safety, Roche

Distribution - Mechanism based modeling (Roche)

Vp - Plasma volume **Vt** - Tissue volume

Kp - Tissue:Plasma partition coeff

fup - unbound fraction
in plasma
LogP - Octanol:buffer
partition coefficient

Poulin, Theil, J Pharm Sci Feb 2002

<u>Pharmaceuticals</u>

P. Theil, Non-clinical Safety, Roche

harmaceut

Available physiologically based ADME Modules

- Absorption ·
- Distribution
- Metabolism

PBPK Model to predict Concentration-time profiles prior to in-vivo experiments

Generic PBPK modeling

To describe ADME (Pharmacokinetics) in animals (validation) and in humans (prediction)

P. Theil, Non-clinical Safety, Roche

Modeling – Input information (data)

Physiology

Drug-specific input

P. Theil, Non-clinical Safety, Roche

PBPK Modeling – Conventional mass balance ODEs

$$\frac{dC_V(t)}{dt} = -\frac{Q_T + CL_V + PS_T}{V_V} \bullet C_V(t) + \frac{PS_T}{V_V \bullet K_p} \bullet C_{EV}(t) + \frac{Q_T}{V_T} \bullet C_{Art}(t)$$

P. Theil, Non-clinical Safety, Roche

Absorption – physiological advanced PBPK model with ACAT model (GastroPlus[®]) as input

Physiological Disposition Model

Physiological Absorption Model GastroPlus®

Input:

<u>Physiology</u> (tissue flows, tissue volumes)

<u>Compound information</u>: Lipophilicity, pKa, molecular weight, protein binding, in-vitro clearance

Output:

Blood, Plasma and Tissue concentrations

Disadvantages:

no enterohepatic circulation only perfusion limited PK no permeability limited PK no transporter functionality

P. Theil, Non-clinical Safety, Roche

PK-Sim[®] – whole body PBPK simulation tool

Input:

<u>Physiology</u> (tissue flows, tissue volumes)

<u>Compound information</u>: Lipophilicity, molecular weight, protein binding, in-vitro clearance

Output:

Blood, Plasma and Tissue concentrations

<u>Merits</u>:

Distinguishes between permeability and perfusionlimited PK based upon

Computational Biology – Basel 2004

P. Theil, Non-clinical Safety, Roche

Current status of PK M&S in discovery and non-clinical development

- Prediction of hepatic clearance requires in-vitro data
- Generic PBPK tools are available to predict primarily based on in-silico and some in-vitro data plasma and tissue kinetics
- Quantitative prediction of contributions of active transport for the disposition remains still a challenge
- First attempts attempt are made to incorporate variability and uncertainty information into the predictions

P. Theil, Non-clinical Safety, Roche

Computational Biology – Basel 2004

maceu

P. Theil, Non-clinical Safety, Roche

The in-vivo experiment can be considered as confirmatory trial

P. Theil, Non-clinical Safety, Roche

Challenges in the field of PK M&S

- Prediction of regional distribution
- Incorporation of variability and uncertainty
- More relevant contribution with regards to modeling of dynamics (safety and efficacy information)

P. Theil, Non-clinical Safety, Roche

Acknowledgement

- Thierry Lavé
- Sami Haddad
- Neil Parrott
- Patrick Poulin

P. Theil, Non-clinical Safety, Roche