Aquaporins: Perfect Filters

Dynamics Efficiency Selectivity

Bert de Groot Matthias Müller Theoretical and Computational Biophysics Department Max Planck Institute for Biophysical Chemistry Göttingen, Germany

www.mpibpc.gwdg.de/abteilungen/070

Acknowledgements

Bert de Groot Matthias Müller Rainer Böckmann

Niels-Bohr Institute, Kobenhavn Thomas Heimburg **MPI**, Membrane Biophysics, Göttingen **Agnieszka Hac** Universität Göttingen, Institut für Röntgenphysik Tim Salditt Insitute of Biophysics and Xray Structure Research, Graz **Georg Pabst** Universität Bielefeld Eberhard Neumann

Biozentrum Basel: B. Heymann, H. Stahlberg, A. Engel

Kyoto Univ.: K. Mitsuoka, Y. Fujiyoshi

Univ. Saarbrücken: V. Helms, Th. Frigato

Univ. Osnabrück: W. Junge

Max-Planck Society, GWDG, PC² Paderborn

Aquaporin Water Channels

Aquaporins are highly selective, efficient water channels (10⁹/s)

Expressed mainly in red blood cells, kindney, lung, brain, eye lens

Question:

How can aquaporins be so selective and at the same time so efficient?

B. de Groot, A. Engel, H. Grubmüller, FEBS Lett. 504 (2001) 206

Aquaporin: Dynamics

MD simulations of water transport

- ca. 100 000 atoms
- full electrostatics, periodic boundary
- 10 ns simulation time

top view

B.L. de Groot, H. Grubmüller, *Science* **<u>294</u>**, 2353 (2001)

Molecular dynamics simulation, $1s \stackrel{4}{=} 2 \cdot 10^{-11}s$

Water Permeation proceeds in steps

one out of 16 full spontaneous permeation events (2 ns)

(outside the channel, only few water molecules are shown)

Efficiency

Water pathway and hydrogen bonding in Aquaporin-1

B.L. de Groot, H. Grubmüller, *Science* **<u>294</u>**, 2353 (2001)

MD simulations of water transport (overlay)

Water mobility (Aquaporin-1)

Water pathway and hydrogen bonding in Aquaporin-1

hydrogen bond energy per water molecule (kJ/mol)

Choreography of water molecules in Aquaporin-1

Selectivity against protons

The Grotthuss mechanism of proton translocation

Tajkhorshid et al. (Science 296:525 (2002))

Two sample Q-hop simulations

Proton trajectories in Q-HOP simulations

B. de Groot, T. Frigato, V. Helms, H. Grubmüller, J. Mol. Biol. 333 (2003) 279-293

Proton free energy profile and distributions

Determinants of proton exclusion

From: X. Hu et al., PNAS 95 (1998) 5935

Primary steps in photosynthesis

*F*¹ *ATP Synthase:*

Driving a molecular nano-machine

Rainer Böckmann

ATP hydrolysis drives rotation of γ subunit and attached actin filament

W. Junge, H. Lill & S. Engelbrecht TIBS 22, 420 - 423 (1997)

Conformational changes in the β -subunits

Conformational changes in the β -subunits

e.g., J.E. Walker, P.D. Boyer, A.E. Senior, G. Oster & H.Y. Wang

F₁-ATPase: Simulation System

Bovine mitochondrial F_1 -ATPase

51 788 water molecules

ions in physiological concentration

183 674 atoms

full electrostatics, S-bound

7 ns simulation time

R. Böckmann and H. Grubmüller, *Nature Struct. Biol.* **9** (2002) 198

Enforced γ -stalk rotation in F_1 -ATPase

Enforced γ-stalk rotation in F₁-ATPase

β-Empty subunit:

30° closure motion of C-terminal domain

R. Böckmann and H. Grubmüller, Nature Struct. Biol. 9 (2002) 198

Conformational changes in the binding pocket

<u>sequential</u> retraction of charged arginines

- interaction energy is raised
- ATP affinity decreases

