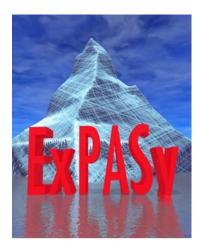


The challenges of extracting and representing protein information and knowledge

Amos Bairoch; Swiss Institute of Bioinformatics (SIB)

Swiss-Prot group


[BC]² Basel– March 18, 2004

Where we will be flying over in the next 30 minutes

- 1. Introduction;
- 2. The Anabelle annotation tool: how to extract more efficiently information from protein sequences using state of the art sequence analysis software;
- 3. How can we progress from the manual and timeconsuming approach of extracting information from publications to a supervised text-mining driven mode;
- 4. NiceProt: a tool to explore the content of Swiss-Prot entries;
- 5. The representation of human disease mutations and polymorphisms at the level of the protein sequences in Swiss-Prot.

Swiss-Prot

- Created in July 1986; since 1987, a collaboration of the SIB and the EMBL/EBI; from 2003 onward it is the central part of the UniProt project;
- > Annotated, non-redundant, cross-referenced, documented protein sequence knowledge resource;
- > 145'000 sequences; 125'000 references; 1'300'000 cross-references; ~400 Mb of annotations;
- > About 1'100'000 sequences in TrEMBL, the Swiss-Prot computer-annotated supplement;
- > Weekly releases; available from about 50 servers, the main source being ExPASy.

10 years of continuous service to the user community

- First molecular biology server on the Web (August 1993); ~350 million access since;
- Dedicated to proteomics:
 - Databases: Swiss-Prot, PROSITE, Swiss-2DAGE, etc.;
 - Many 2D/MS protein identification/characterzeioood
 sequence analysis tools;
- Mirror sites in Australia, Bolivia, Canador Society, Taiwan and USA. Soon in Brazil.

Welcome to UniProt

UniProt (Universal Protein Resource) is the world's most comprehensive catalog of information on proteins. It is a central repository of protein sequence and function created by joining the information contained in Swiss-Prot, TrEMBL, and PIR.

UniProt is comprised of three components, each optimized for different uses. The **UniProt Knowledgebase (UniProt)** is the central access point for extensive curated protein information, including function, classification, and cross-reference. The **UniProt Non-redundant Reference (UniRef)** databases combine closely related sequences into a single record to speed searches. The **UniProt Archive (UniParc)** is a comprehensive repository, reflecting the history of all protein sequences.

The sequences and information in UniProt are accessible via <u>text</u> search, <u>BLAST similarity search</u>, and <u>FTP</u>.

European Bioinformatics Institute

Swiss Institute of Bioinformatics

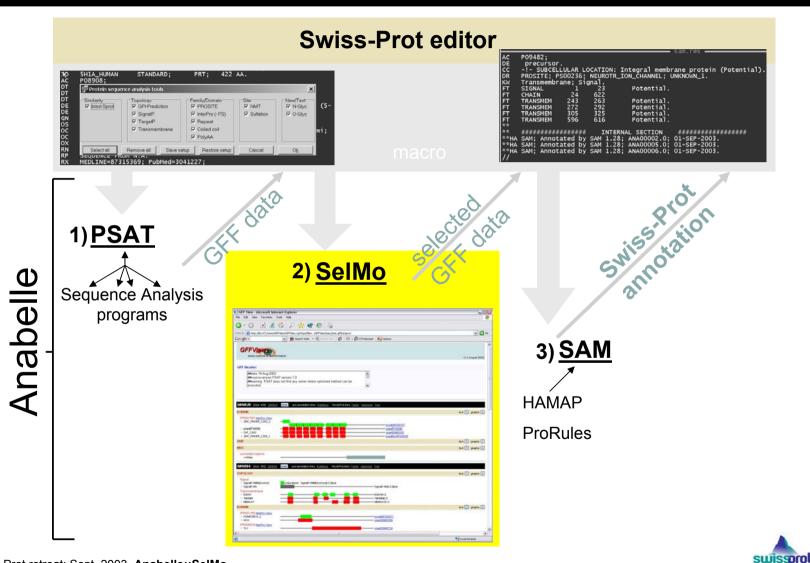
Georgetown University

UniProt in one slide...

• Universal Protein Resource;

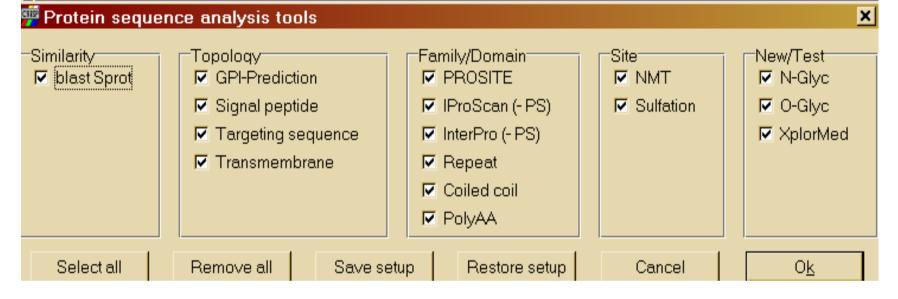
- Collaboration between 3 groups: the Swiss-Prot groups at SIB and EBI and the PIR group;
- www.uniprot.org (online since Dec 15, 2003);
- The UniProt Knowledgebase (UniProt) is the core component and is comprised of Swiss-Prot+TrEMBL;
- The UniProt Non-redundant Reference (UniRef) databases combine closely related sequences into a single record to speed searches. Three versions exist: UniRef50, UniRef90 and UniRef100;
- The UniProt Archive (UniParc) is a comprehensive repository, reflecting the history of all protein sequences.

The contents of the Swiss-Prot protein knowledgebase


- Sequences!
- ANNOTATIONS -
- References
- Taxonomic data
- Keywords
- Cross-references
- Documentation

- •Function(s); role(s)
- Post-translational modifications
- •Domains
- •Subcellular location
- •Protein/protein interactions
- •Similarities
- •Diseases, mutagenesis
- •Conflicts and variants

[2] Using sequence analysis to annotate protein sequences


- Since the inception of Swiss-Prot, we have used a number of sequence analysis methods to help annotate protein sequences;
- Three periods:
 - Using PC/Gene (1986-1991);
 - Implementation of a number of tools, individually launched from our annotation platform (1992-2003);
 - Anabelle (2004-?).

Anabelle Integration and workflow

PSAT

PSAT runs many protein sequence analysis methods in parallel on one or several protein sequences and parses the results into the general feature format (gff)

> The input may be in Fasta or **Swiss-Prot** format.

Methods for the prediction of the protein topology

Methods	Results
SignalP	Prediction of a signal peptide by NN and HMM methods
TargetP	Chloroplast/Mitochondrion transit peptide
GPI_prediction	GPI-anchor prediction
Transmembrane	3 methods: TMHMM, MEMSAT, ESKW

Methods for the detection of protein families and domains

Methods	Results
ps_scan	PROSITE (profiles, patterns)
coils	Coiled-coils
REP	Repeats, e.g. Heat, Kelch, LRR, WD
polyAA	Streches of amino acids

Methods for the detection of posttranslational modified amino acids

Methods	Results
Sulfinator	Prediction of potential tyrosine sulfation sites
NMT	Myristoylation of the N-terminal glycine (all) and internal glycine (viral sequence)
O-Glyc	O-glycosylation sites in mammalian proteins (Mucin-type GalNAc)
N-Glyc	N-Glycosylation sites in mammalian proteins

Results of PSAT are in the gff format

Example of a "general feature format" (gff) output:

INS_HUMAN SignalP-NN|v2.0|euk Signal 1 24|0.96 . . . Level 0 ; C-max "0.889,25,Y" ; Y-max "0.818,25,Y" ; S-max "0.998,7,Y" ; S-mean "0.902,Y" ; Category "TOPOLOGY"

• Defined fields

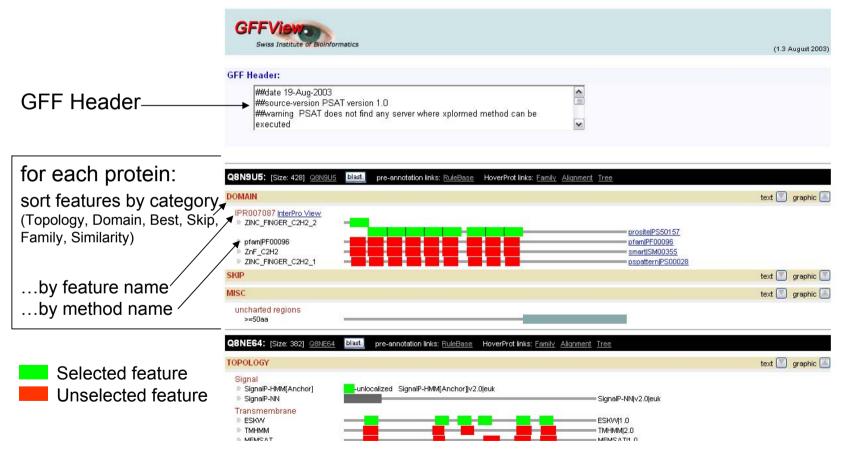
INS_HUMAN SignalP-NN|v2.0|euk Signal 1 24|0.96...

IDSwiss-Prot identifierSourceProgram name, the version number, parametersFeatureFeature identifier, triggers the AA rule

From Protein sequence position where the feature starts

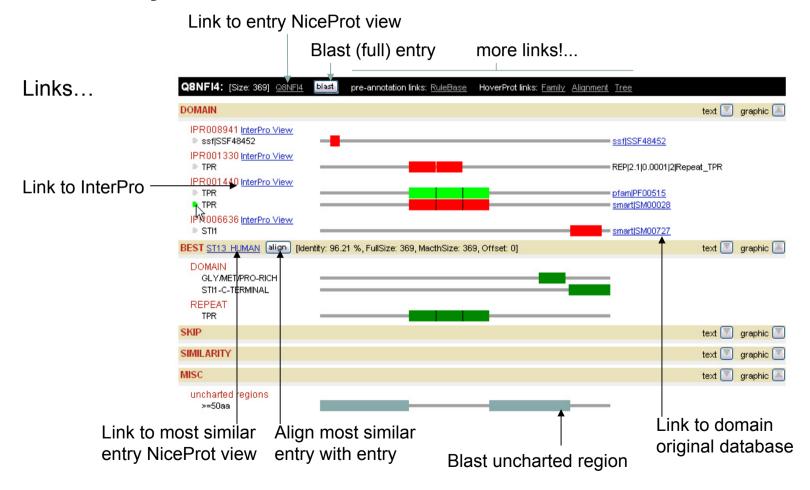
To Protein sequence position where the feature end

Score Score for a hit

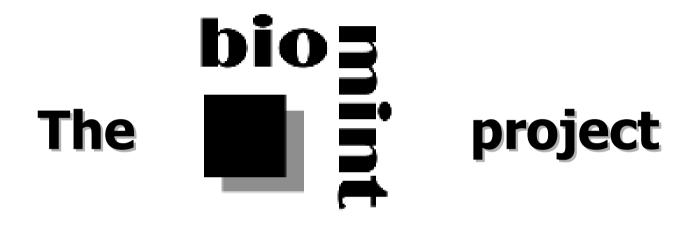

• Attributes

Level 0 ; C-max "0.889,25,Y" ; Y-max "0.818,25,Y" ; S-max "0.998,7,Y" ; S-mean "0.902,Y" ; Category "TOPOLOGY"

Level Level of confidence in the result Optional field Values of results Category Method Class


SelMo

Viewer Layout:



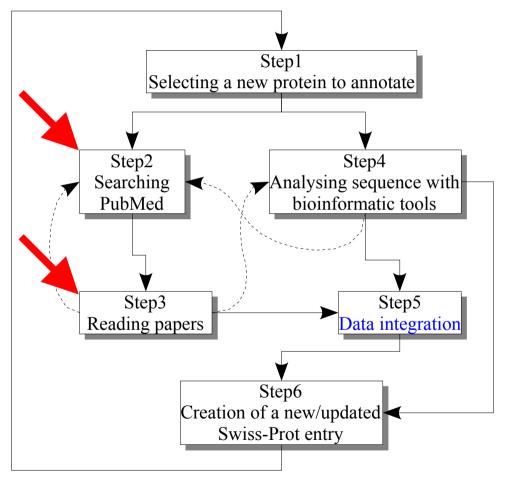
SelMo

Viewer Layout:

сс	L CTMTI		alanac	to peptidase family S1.
cc				2 CUB domains.
cc				1 EGF-like domain.
cc				2 Sushi (CCP/SCR) domains.
DR	PROSITE;	PS00010;		DROXYL; 1.
DR	PROSITE;	PS01180;		DROATE, I.
DR	PROSITE;		CUB; 2 EGF_2;	1
DR	PROSITE;		EGF_CA	• 1
DR		PS50923;	SUSHI;	
DR	PROSITE;	PS50240;	TRYPSI	
DR	PROSITE;		TRYPSI	
DR	PROSITE;		TRYPSI	
KW				se; Protease; Sushi; Repeat; Signal;
KW	EGF-like			lation.
FT	DOMAIN	20	138	CUB 1.
FT	DOMAIN	139	182	EGF-like, calcium-binding (Potential).
FT	DOMAIN	185	297	CUB 2.
FT	DOMAIN	299	364	Sushi 1.
FT	DOMAIN	365	434	Sushi 2.
FT	DOMAIN	449	699	Serine protease.
FT	ACT_SITE	490	490	Charge relay system (By similarity).
FT	ACT_SITE	552	552	Charge relay system (By similarity).
FT	ACT_SITE	646	646	Charge relay system (By similarity).
FT	MOD_RES	159	159	HYDROXYLATION (POTENTIAL).
FT	DISULFID	73	91	Potential.
FT	DISULFID	143	157	Potential.
FT	DISULFID	153	166	Potential.
FT	DISULFID	168	181	Potential.
FT	DISULFID	185	212	Potential.
FT	DISULFID	242	260	Potential.
FT	DISULFID	301	349	Potential.
FT	DISULFID	329	362	Potential.
FT	DISULFID	367	414	Potential.
FT	DISULFID	397	432	Potential.
FT	DISULFID	436	572	Potential.
FT	DISULFID	614	631	Potential.
FT		642 49	672 49	Potential.
FT FT	CARBOHYD	49 178	49 178	N-linked (GlcNAc) (Potential). N-linked (GlcNAc) (Potential).
FT		385	385	
	CARBOHYD	407	407	
FT	CARBOHYD	407	407	N-linked (GlcNAc) (Potential).

Anne-Lise Veuthey, Swiss Institute of Bioinformatics

bio g int


- 3 year FP5 European Project, started January 2003
- Official web site: www.biomint.org
- 5 teams involved:
 - University of Manchester (UK, coordinator)
 - PharmaDM (Belgium)
 - Austrian Research Institute for Artificial Intelligence (Austria)
 - University of Geneva, AI Lab (Switzerland)
 - University of Antwerp, CNTS (Belgium)
 - Swiss Institute of Bioinformatics (Switzerland)

The goals of BioMinT

To develop a generic text mining tool that:

- Interprets different types of queries;
- Retrieves relevant documents from the biological literature;
- Extracts the required information;
- Outputs the result as a database slot filler or as a structured report
- The tool will thus provide two essential research support services:
 - As a curator's assistant it will accelerate, by partially automating, the annotation and update of biodatabases;
 - 2. As a researcher's assistant: it will generate readable reports in response to queries from biological researchers.

Swiss-Prot Entry Creation Flowchart

Query interface prototype

ile <u>H</u> elp						
Query parameters						
Swiss-Prot AC: P08183		•	FI	om clipboar	d	From ExPAS
iene name: ABCB1					•	Search HUG
Js Symbol	Full Na	me			Sou	Irce
Multidrug resistance protein 1	Swiss-Prot/TrEME	L official (DE	SPTR/protei	n offi	icial
P-glycoprotein 1	Swiss-Prot/TrEMB	LDE		SPTR/protei	n syr	nonym
CD243 antigen	Swiss-Prot/TrEMB	LDE		SPTR/protei	n syr	noným
ABCB1	Swiss-Prot/TrEME	LGN		SPTR/gene	syno	nym; HUGO/of.
PGY1	Swiss-Prot/TrEME	LGN		SPTR/gene	syno	nym; HUGO/pr.
MDR1	Swiss-Prot/TrEME	LGN		SPTR/gene	syno	nym; HUGO/pr.
P-gp	ATP-binding cass	ette, sub-t	'am	HUGO/alias	es	
earch modifiers: [mutations OR n	nutation) OR (variants OR va Years from: 1990 to Maximum number of hits):	(poly 103 -	morphisms	окр	olymor phism)
Query statistics	Years from: 1990 to	500			ОКР	
earch modifiers: <u>mutations OR n</u> Query statistics Exploded query	Years from: 1990 to Maximum number of hits Requested Hits: Total hits returned	500		• 		
Query statistics Exploded query Term	Years from: 1990 to Maximum number of hits Requested Hits: Total hits returned Type	500		• 	ount	t
Query statistics Exploded query Term "genes, mdr"	Years from: 1990 to Maximum number of hits Requested Hits: Total hits returned Type MeSH Terms	500		• 		
Query statistics Exploded query Term "genes, mdr" ABCB1	Years from: 1990 to Maximum number of hits Requested Hits: Total hits returned Type MeSH Terms Text Word	500		• 		t 50
Query statistics Exploded query Term "genes, mdr"	Years from: 1990 to Maximum number of hits Requested Hits: Total hits returned Type MeSH Terms	500		• 		t 810
Query statistics Exploded query Term "genes, mdr" ABCB1 "p-glycoprotein"	Years from: 1990 to Maximum number of hits Requested Hits: Total hits returned MeSH Terms Text Word MeSH Terms	500		• 		t 810 50 6012
Query statistics Exploded query Term "genes, mdr" ABCB1 "p-glycoprotein" Multidrug resistance protein 1	Years from: 1990 to Maximum number of hits Requested Hits: Total hits returned MeSH Terms Text Word MeSH Terms Text Word	500		• 		t 810 50 6012 105
Query statistics Exploded query Term "genes, mdr" ABCB1 "p-glycoprotein" Multidrug resistance protein 1 "genes, mdr"	Years from: 1990 to Maximum number of hits Requested Hits: Total hits returned MeSH Terms Text Word MeSH Terms Text Word MeSH Terms	500		• 		t 810 50 6012 109 810
Query statistics Exploded query Term "genes, mdr" ABCB1 "p-glycoprotein" Multidrug resistance protein 1 "genes, mdr" ABCB1	Years from: 1990 to Maximum number of hits Requested Hits: Total hits returned MeSH Terms Text Word MeSH Terms Text Word MeSH Terms Text Word MeSH Terms Text Word	500		• 		t 810 5012 109 810 50
Query statistics Exploded query Term "genes, mdr" ABCB1 "p-glycoprotein" Multidrug resistance protein 1 "genes, mdr" ABCB1 "genes, mdr"	Years from: 1990 to Maximum number of hits Requested Hits: Total hits returned MeSH Terms Text Word MeSH Terms Text Word MeSH Terms Text Word MeSH Terms Text Word MeSH Terms	500		• 		t 810 50 6012 109 810 50 810

Developed by Pavel Dobrokhotov in the framework of SwissProt medical annotation: Bioinformatics 19(suppl. 1): i91-i94 (ISMB 2003)

PTM extractor

- A tool that relies on AA numbering to extract relevant features from PubMed abstracts;
- The tool makes use of the annotation in the target entry data to refine the positions (Example: taking into account a signal peptide);
- The current version is applied to the annotation of phosphorylation, N-glycosylation and palmitoylation sites, disulfide bridges, as well as to capture potential mutagenesis results.

Benchmark environment for training and evaluation

We need a corpus of supervised abstracts

- \checkmark To train the text-mining tools
- ✓ To elaborate rules for specific information extraction

What do we need to tag?

- Fragments of, or whole sentences describing information useful for protein annotation
- Specific words describing a specific type of information

Document annotation interface

- Generic XML tagger currently being adapted for Swiss-Prot requirements;
- Developed by Gilles Bisson and Pierre-Emmanuel Gros, CNRS, Grenoble, in the framework of the Caderige project (<u>http://caderige.imag.fr</u>);
- Soon fully operational for use by the Swiss-Prot annotators.

_				
				t Style Help 🖹 🛗 🛗 🚔 Ligne :25 🏏 🏏 📃
	FUNCTION	FUNCTION		EDLINE=21551155; PubMed=11500515;
		3		earns A.E., Donohue M.M., Sanval B., Demay M.B.;
	Type Cofactor	Type Cofactor		
	Function	Function		Noning and characterization of a novel protein kinase that impairs
	Catalytic_activity	Catalytic_activity		teoblast differentiation in vitro.";
	Pathway	Pathway		Biol. Chem. 276:42213-42218(2001).
	Cofactor	Cofactor		
				one morphogenic proteins (BMPs) play a key role in <mark>skeletal</mark>
				pment and patterning. Using the technique of differential display
				rase chain reaction (ddPCR), we have identified a novel gene whose
Delete Tag Grou	Delete current Tag Dele	Delete current Tag		sion is increased during BMP-2-induced differentiation of the
	•			ondroblastic cell line, MLB13MYC clone 17, to an osteoblastic
	Style des Balises	Chile des Delless		ype. The 6.5-kilobase mRNA recognized by this ddPCR product is
				sed 10-fold by BMP-2 treatment of the MLB13MYC clone 17 cells. The
	ANNOTATION	ANNOTATION		recognized by this ddPCR product is also increased as MC3T3-E1 cells
	SEQUENCE	SEQUENCE		ulate the program of osteoblast differentiation during prolonged
				. The full-length transcript corresponding to this ddPCR product
	SEQUENCE_WORD	SEQUENCE_WO		oned from a MLB13MYC clone 17 cell cDNA library. Analysis of the
	FUNCTION	FUNCTION		ed amino acid sequence demonstrated that this gene encodes a novel
	FUNCTION_WORD	FUNCTION WOR		Da putative serine/threonine protein kinase containing a nuclear
				ation signal. The <mark>kinase</mark> domain, expressed in Escherichia coli, is
	INTERACTION	INTERACTION		e of autophosphorylation as well as phosphorylation of myelin basic
	INTERACTION_WORD	INTERACTION W		. The gene was, therefore, named BIKe (BMP-2-Inducible Kinase). The
TION	SUBCELLULAR_LOCATION			uclear localization signal is able to direct green fluorescent
		8		n to the nucleus in transfected COS-7 cells. When stably expressed
TION_WORD	SUBCELLULAR_LOCATION_	SUBCELLULAR_		T3-E1 cells, BIKe significantly decreases alkaline phosphatase
	TISSUE SPECIFICITY	TISSUE SPECIEI		and osteocalcin mRNA levels and retards mineral deposition
WODD				e to vector control. This novel kinase, therefore, is likely to
	TISSUE_SPECIFICITY_WORE	8		n important regulatory role in attenuating the program of osteoblast
AGE	DEVELOPMENTAL_STAGE	DEVELOPMENT		ntiation.
AGE_WORD	DEVELOPMENTAL_STAGE_\	DEVELOPMENTA	•	ntiauon.
	MOD RES	R		
	MOD_RES_WORD	MOD RES WORL		TATION>RX MEDLINE=2155115
				CTION Type="Function">The bone morphogenic
				ICTION>The bone morphogenic
	LIPID_WORD	LIPID_WORD		NCTION_WORD Type="idem">skeletal development
	BOND	BOND		NCTION_WORD Type="idem">patterning
				JNC710N_WORD Type="idem"=patterning
	BOND_WORD	BOND_WORD		JENCE>we have identified a
	REGION	REGION		ELOPMENTAL_STAGE>during BMP-2-induced SCELLULAR_LOCATION_WORD>
	REGION WORD	REGION WORD		RACTION Type="Induction">The 6.5-kilobase mRN
				ICOMENTAL STAGESosteblast different
	BINDING	BINDING		JENCE>Analysis of the dedu
	BINDING_WORD	BINDING WORD		JENCE>126-kDa putative
	MUTATION			CELLULAR_LOCATION_WORD>nuclear localization
				SCELLULAR_LOCATION>nuclear localization
	MUTATION_WORD	MUTATION_WOR		CTION Type="Function">kinase domain
	DISEASE	DISEASE		
		•		ee Validation result Tagged document
∕⊑r®.	╡ ╡ ╡	~~	i e 💁 b 💁 M 🏂	

Function sentences

"Drosophila dishevelled (dsh) functions in two pathways: it is necessary to transduce Wingless (Wg) signaling and it is required in planar cell polarity." <PMID=12072470> [Drosophila dishevelled functions in at least 2 pathways - transduction of Wingless signalling and planar cell polarity] "Following binding of a ligand to its cognate receptor, receptor-associated Jaks are activated. STAT proteins are then in turn activated by tyrosine phosphorylation by Jak kinases, allowing their dimerization and subsequent translocation into the nucleus, where they modulate expression of target genes." <PMID=10781830>

[Activated Jaks phosphorylate tyrosines on STAT proteins, which allows them to dimerise, enter the nucleus and alter gene expression]

Disease sentences

"Tuberous sclerosis is a relatively common inherited disease that causes multiple benign tumours in different organs, frequently leading to skin rashes, seizures and mental handicap. The disease can be caused by mutations in either of two genes, TSC2, identified in 1993, and TSC1, only recently identified"

<PMID=9743993>

[Mutations in the TSC1 and TSC2 genes lead to tuberous sclerosis]

"Numerous studies have demonstrated that chemokines play an integral role in diseases marked by inflammation" <PMID=12476351>

[Chemokines are involved in diseases marked by inflammation]

NiceProt View of Swiss-Prot: <u>P00750</u>

Printer-friendly view Submit update Quick BlastP search

[Entry info] [Name and origin] [References] [Comments] [Cross-references] [Keywords] [Features] [Sequence] [Tools]

Note: most headings are clickable, even if they don't appear as links. They link to the user manual or other documents.

Entry information	
Entry name	TPA_HUMAN
Primary accession number	P00750
Secondary accession number	Q15103
Entered in Swiss-Prot in	Release 01, July 1986
Sequence was last modified in	Release 01, July 1986
Annotations were last modified in	Release 43, March 2004
Name and origin of the protein	
Protein name	Tissue-type plasminogen activator [Precursor]
Synonyms	EC <u>3.4.21.68</u>
	tPA
	t-PA
	t-plasminogen activator Alteplase
	Reteplase
Gene name	PLAT
From	Homo sapiens (Human) [TaxID: 9606]
Taxonomy	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.

References

- [1] SEQUENCE FROM NUCLEIC ACID.
 - TISSUE=<u>Melanoma</u>;
 - MEDLINE=83115262; PubMed=6337343; [NCBI, ExPASy, EBI, Israel, Japan]
 - Pennica D., Holmes W.E., Kohr W.J., Harkins R.N., Vehar G.A., Ward C.A., Bennett W.F., Yelverton E., Seeburg P.H., Heyneker
 - H.L., Goeddel D.V., Collen D.;
 - "Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli.";
 - Nature 301:214-221(1983).
- [2] SEQUENCE FROM NUCLEIC ACID.
 - TISSUE=Fetal lung;
 - MEDLINE=88262579; PubMed=3133640; [NCBI, ExPASy, EBI, Israel, Japan]
 - Sasaki H., Saito Y., Hayashi M., Otsuka K., Niwa M.;
 - "Nucleotide sequence of the tissue-type plasminogen activator cDNA from human fetal lung cells.";
 - Nucleic Acids Res. 16:5695-5695(1988).
- [3] SEQUENCE FROM NUCLEIC ACID.
 - MEDLINE=88054470; PubMed=2824147; [NCBI, ExPASy, EBI, Israel, Japan]
 - Reddy V.B., Garramone A.J., Sasak H., Wei C.-M., Watkins P., Galli J., Hsiung N.;
 - "Expression of human uterine tissue-type plasminogen activator in mouse cells using BPV vectors.";
 - DNA 6:461-472(1987).
- [22] STRUCTURE BY NMR OF KRINGLE 2.
 - MEDLINE=92106329; PubMed=1762144; [NCBI, ExPASy, EBI, Israel, Japan]
 - Byeon I.-J.L., Llinas M.;
 - "Solution structure of the tissue-type plasminogen activator kringle 2 domain complexed to 6-aminohexanoic acid an antifibrinolytic drug.";
 - J. Mol. Biol. 222:1035-1051(1991).
- [23] STRUCTURE BY NMR OF 38-85.
 - MEDLINE=92292163; PubMed=1602484; [NCBI, ExPASy, EBI, Israel, Japan]
 - Downing A.K., Driscoll P.C., Harvey T.S., Dudgeon T.J., Smith B.O., Baron M., Campbell I.D.;
 - "Solution structure of the fibrin binding finger domain of tissue-type plasminogen activator determined by 1H nuclear magnetic resonance.";
 - J. Mol. Biol. 225:821-833(1992).
- [24] STRUCTURE BY NMR OF 36-126.
 - MEDLINE=96027104; PubMed=7582899; [NCBI, ExPASy, EBI, Israel, Japan]
 - Smith B.O., Downing A.K., Driscoll P.C., Dudgeon T.J., Campbell I.D.;
 - "The solution structure and backbone dynamics of the fibronectin type I and epidermal growth factor-like pair of modules of tissue-type plasminogen activator.";
 - Structure 3:823-833(1995).

Comments

- FUNCTION: Converts the abundant, but inactive, zymogen plasminogen to plasmin by hydrolyzing a single Arg-Val bond in plasminogen. By controlling plasmin-mediated proteolysis, it plays an important role in tissue remodeling and degradation, in cell migration and many other physiopathological events.
- CATALYTIC ACTIVITY: Specific cleavage of Arg-|-Val bond in plasminogen to form plasmin.
- SUBUNIT: Heterodimer of chain A and chain B held by a disulfide bond. Binds to fibrin with high affinity. This interaction leads to an increase in the catalytic efficiency of the enzyme between 100-and 1000-fold, due to an increase in affinity for plasminogen. Similarly, binding to heparin increases the activation of plasminogen. Binding to laminin and fibronectin has also been demonstrated. Binds to mannose receptor and the low-density lipoprotein receptor-related protein (LRP1). These proteins are involved in TPA clearance. Also binds to annexin II and to cytokeratin 8. Yet unidentified interactions on endothelial cells and vascular smooth muscle cells (VSMC) lead to a 100-fold stimulation of plasminogen activation. In addition, binding to VSMC reduces TPA inhibition by PAI-1 by 30-fold.
- SUBCELLULAR LOCATION: Secreted: extracellular.
- ALTERNATIVE PRODUCTS:

Name

• Alternative splicing [2 named forms] Display all isoform sequences in Fasta format

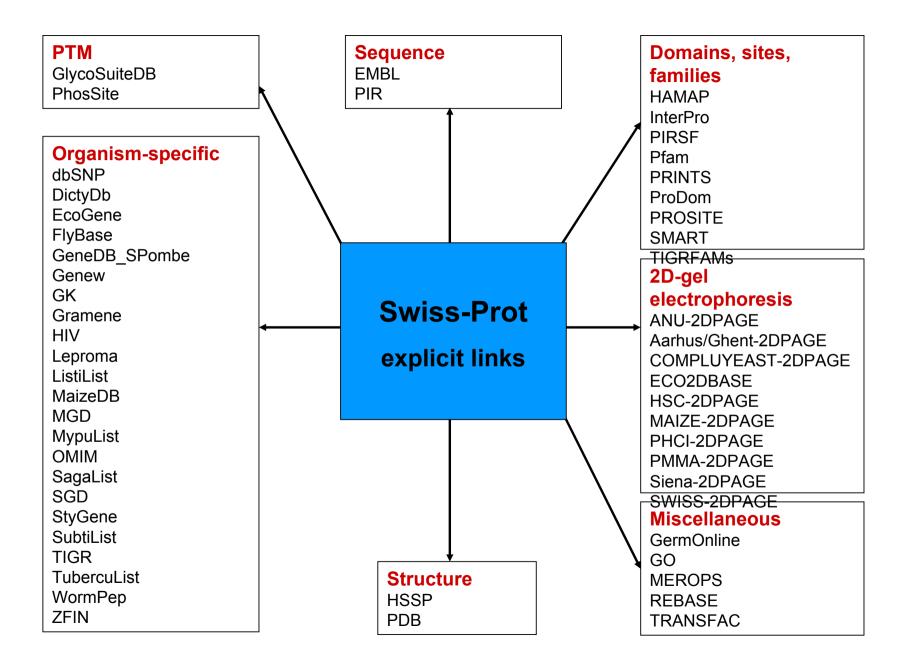
Name	Long
Isoform ID	P00750-1
This is the i	isoform sequence displayed in this entry.

Short Isoform ID P00750-2

Note: No experimental confirmation available.

Features which should be applied to build the isoform sequence: VSP 005411, VSP 005412.

- TISSUE SPECIFICITY: Synthesized in numerous tissues (including tumors) and secreted into most extracellular body fluids, such as plasma, uterine fluid, saliva, gingival crevicular fluid, tears, seminal fluid, milk.
- DOMAIN: Both FN1 and one of the kringle domains are required for binding to fibrin.
- DOMAIN: Both FN1 and EGF-like domains are important for binding to LRP1.
- DOMAIN: The FN1 domain mediates binding to annexin II.
- DOMAIN: The second kringle domain is implicated in binding to cytokeratin 8 and to the endothelial cell surface binding site.
- PTM: The single chain, almost fully active enzyme, can be further processed into a two-chain fully active form by a cleavage after Arg-310 catalyzed by plasmin, tissue kallikrein or factor Xa.


- *PTM*: Differential cell-specific N-linked glycosylation gives rise to two variants: type I and type II. The single chain type I variant is less readily converted into the two-chain form by plasmin and the two-chain type I variant has a lower activity than the two-chain type II in the presence of fibrin.
- PTM: N-glycosylation of Asn-152; the bound oligomannosidic glycan is involved in the interaction with the mannose receptor.
- PTM: Characterization of O-linked glycan was studied in Bowes melanoma cell line.
- DISEASE: Increased activity of TPA causes hyperfibrinolysis, with excessive bleeding as a consequence.
- DISEASE: Defective release of TPA causes hypofibrinolysis, leading to thrombosis or embolism.
- *PHARMACEUTICAL*: Available under the names Activase (Genentech) and Retavase (Centocor and Roche) [Retavase is a fragment of TPA that contains kringle 2 and the protease domain; it was also known as BM 06.022]. Used in Acute Myocardial Infarction (AMI), in Acute Ischemic Stroke (AIS) and Pulmonary Embolism (PE) to initiates fibrinolysis.
- SIMILARITY: Belongs to peptidase family S1.
- SIMILARITY: Contains 1 EGF-like domain.
- SIMILARITY: Contains 1 fibronectin type I domain.
- SIMILARITY: Contains 2 kringle domains.
- DATABASE: NAME=Activase; NOTE=Clinical information on Activase; WWW="http://www.genentech.com/gene/products/information/cardiovascular/activase/".
- **DATABASE**: NAME=Retavase; NOTE=Clinical information on Retavase; WWW="http://www.centocor.com/cgi-bin/site/products/prod_retavase.cgi".

Copyright

This Swiss-Prot entry is copyright. It is produced through a collaboration between the Swiss Institute of Bioinformatics and the EMBL outstation - the European Bioinformatics Institute. There are no restrictions on its use by non-profit institutions as long as its content is in no way modified and this statement is not removed. Usage by and for commercial entities requires a license agreement (See http://www.isb-sib.ch/announce/ or send an email to license@isb-sib.ch)

Cross-
references

Cross-references		
	L00153; AAB59510.1;	[EMBL / GenBank / DDBJ] [CoDingSequence]
	L00141; AAB59510.1; JOINED.	[EMBL / GenBank / DDBJ] [CoDingSequence]
	L00142; AAB59510.1; JOINED.	[EMBL / GenBank / DDBJ] [CoDingSequence]
	L00143; AAB59510.1; JOINED.	[EMBL / GenBank / DDBJ] [CoDingSequence]
	L00144; AAB59510.1; JOINED.	[EMBL / GenBank / DDBJ] [CoDingSequence]
	L00145; AAB59510.1; JOINED.	[EMBL / GenBank / DDBJ] [CoDingSequence]
	L00146; AAB59510.1; JOINED.	[EMBL / GenBank / DDBJ] [CoDingSequence]
	L00147; AAB59510.1; JOINED.	[EMBL / GenBank / DDBJ] [CoDingSequence]
	L00148; AAB59510.1; JOINED.	[EMBL / GenBank / DDBJ] [CoDingSequence]
	L00149; AAB59510.1; JOINED.	[EMBL / GenBank / DDBJ] [CoDingSequence]
	L00150; AAB59510.1; JOINED.	[EMBL / GenBank / DDBJ] [CoDingSequence]
EMBL	L00151; AAB59510.1; JOINED.	[EMBL / GenBank / DDBJ] [CoDingSequence]
	X07393; CAA30302.1;	[EMBL / GenBank / DDBJ] [CoDingSequence]
	A07197; CAA00642.1;	[EMBL / GenBank / DDBJ] [CoDingSequence]
	M18182; AAA36800.1;	[EMBL / GenBank / DDBJ] [CoDingSequence]
	K03021; AAA98809.1;	[EMBL / GenBank / DDBJ] [CoDingSequence]
	M15518; AAA60111.1;	[EMBL / GenBank / DDBJ] [CoDingSequence]
	X13097; CAA31489.1;	[EMBL / GenBank / DDBJ] [CoDingSequence]
	BC007231; AAH07231.1;	[EMBL / GenBank / DDBJ] [CoDingSequence]
	V00570; CAA23833.1;	[EMBL / GenBank / DDBJ] [CoDingSequence]
	M11890; AAA61213.1;	[EMBL / GenBank / DDBJ] [CoDingSequence]
		[EMBL / GenBank / DDBJ] [CoDingSequence]
	D01096; BAA00881.1;	[EMBL / GenBank / DDBJ] [CoDingSequence]
	A01465; CAA00166.1;	[EMBL / GenBank / DDBJ] [CoDingSequence]
PIR	<u>A94004;</u> UKHUT.	
	1BDA; 11-MAY-99. [ExPASy /]	
		RCSB / EBI]
	1TPG; 15-SEP-95. [ExPASy /]	RCSB / EBI]
		RCSB / EBI]
PDB	1TPM; 31-JAN-94. [ExPASy /]	RCSB / EBI]
	1TPN; 31-JAN-94. [ExPASy /]	RCSB / EBI
		RCSB / EBI]
	1A5H; 20-APR-99. [ExPASy /]	
	1PML; 22-JUN-94. [ExPASy /]	·
	Detailed list of linked structures	

	<u></u>	
MEROPS	<u>S01.232;</u>	
GlycoSuiteDB	<u>P00750;</u>	
Genew	HGNC:9051; PLAT.	
CleanEx	HGNC:9051; PLAT.	
GeneCards	<u>PLAT</u> .	
GeneLynx	PLAT; Homo sapiens.	
GenAtlas	<u>PLAT</u> .	
MIM	173370 [<u>NCBI</u> / <u>EBI</u>].	
GO	GO:0004296; Molecular function: t-plasminoge: GO:0007596; Biological process: blood coagula GO:0006464; Biological process: protein modifi GO:0006508; Biological process: proteolysis an	ication (traceable author statement).
SOURCE	PLAT; Homo sapiens.	
Ensembl	P00750; Homo sapiens. [Entry / Contig view]	
InterPro	IPR009003; Cys_Ser_trypsin. IPR006209; EGF_like. IPR000083; Fibrnctn1. IPR006210; IEGF. IPR000001; Kringle. IPR001254; Peptidase_S1. IPR001314; Peptidase_S1A. Graphical view of domain structure.	Cross-references can be explicit or implicit and can also be a source of data
Pfam.	PF00008; EGF; 1. PF00039; fn1; 1. PF00051; kringle; 2. PF00089; trypsin; 1. Pfam graphical view of domain structure.	
PRINTS	PR00722; CHYMOTRYPSIN. PR00018; KRINGLE.	
ProDom	PD000395; Kringle; 2. [Domain structure / List of seq. sharing at least 1	l domain]

SMART	<u>SM00181;</u> EGF; 1. <u>SM00058;</u> FN1; 1. <u>SM00130;</u> KR; 2. <u>SM00020;</u> Tryp_SPc; 1.
PROSITE	PS00022; EGF_1; 1. PS01186; EGF_2; 1. PS50026; EGF_3; 1. PS01253; FIBRONECTIN_1; 1. PS0021; KRINGLE_1; 2. PS50070; KRINGLE_2; 2. PS50240; TRYPSIN_DOM; 1. PS00134; TRYPSIN_HIS; 1. PS00135; TRYPSIN_SER; 1.
HOVERGEN	[Family / Alignment / Tree]
BLOCKS	<u>P00750</u> .
ProtoNet	<u>P00750</u> .
ProtoMap	<u>P00750</u> .
PRESAGE	<u>P00750</u> .
DIP	<u>P00750</u> .
ModBase	<u>P00750</u> .
SMR	P00750; B7EC9B1A5E3FDC4D.
SWISS-2DPAGE	Get region on 2D PAGE.
Keywords	
Plasminogen activati	ion; Hydrolase; Serine protease; Glycoprotein; Plasma; Kringle; EGF-like domain; Repeat; Signal;
	Pharmaceutical; 3D-structure; Polymorphism.

Кеу	From	То	Length	Description	FTId
SIGNAL	1	23	23	Potential.	
PROPEP	24	32	9		
PROPEP	33	35	3	Removed by plasmin.	
CHAIN	36	562	527	TISSUE-TYPE PLASMINOGEN ACTIVATOR.	
CHAIN	36	310	275	TISSUE-TYPE PLASMINOGEN ACTIVATOR A CHAIN.	
CHAIN	311	562	252	TISSUE-TYPE PLASMINOGEN ACTIVATOR B CHAIN.	
DOMAIN	39	81	43	FIBRONECTIN TYPE-I.	
DOMAIN	82	120	39	EGF-LIKE.	
DOMAIN	127	208	82	KRINGLE 1.	
DOMAIN	215	296	82	KRINGLE 2.	
DOMAIN	311	562	252	SERINE PROTEASE.	
DOMAIN	42	52	11	IMPORTANT FOR BINDING TO ANNEXIN II.	
SITE	102	102	1	IMPORTANT FOR BINDING TO LRP1.	
ACT_SITE	357	357		CHARGE RELAY SYSTEM.	
ACT_SITE	406	406		CHARGE RELAY SYSTEM.	
ACT_SITE	513	513		CHARGE RELAY SYSTEM.	
DISULFID	41	71			
DISULFID	69	78			
DISULFID	86	97			
DISULFID	91	108		Many different	
DISULFID	110	119			
DISULFID	127	208		By similarity. features :	
DISULFID	148	190		By similarity.	
DISULFID	179	203		By símilarity.	
DISULFID	215	296		Domains	
DISULFID	236	278		Domains	
DISULFID	267	291			
DISULFID	299	430		INTERCHAIN. PTMs	
DISULFID	342	358		By similarity.	
DISULFID	350	419		By similarity.	
DISULFID	444	519		By símilarity.	
DISULFID	476	492		By símílaríty.	
DISULFID	509	537		By símilarity.	
CARBOHYD	96	96		O-LINKED (FUC) [<u>GlycoSuiteDB</u>].	CAR_000029
CARBOHYD	152	152		N-LINKED (GLCNAC) (IN TYPE I AND II VARIANTS).	
CARBOHYD	219	219		N-LINKED (GLCNAC) (IN TYPE I VARIANT ONLY)	CAR_000030
				[<u>GlycoSuiteDB</u>].	
CARBOHYD	483	483		N-LINKED (GLCNAC) (IN TYPE I AND II VARIANTS)	CAR_000031
GIRD	151			[GlycoSuiteDB].	
	0 7 0	0 - 0	-1	LAUSSING HOD STATE SULTA SCHTTTEN	

STRAND STRAND STRAND STRAND	<u>55</u> 66 77 80	59 70 77 81	5 5 1 2	Modeling his sequence va	
STRAND	<u>49</u>	49	1		
STRAND	42	42	1		
CONFLICT	159	160		$KP \rightarrow N1$ (in Ref. 7).	
CONFLICT	93	93	- 🔻	N => T (in Ref. 5).	
VARIANT	164	164	*	$R \rightarrow W$ (in dbSNP:2020921) [NCBI/Ensembl].	VAR 011783
VARSPLIC	292	562		(in <u>isoform Short</u>). Missing (in isoform Short).	VSP 005412
VARSPLIC	269	291		NPDGDAKPWCHVLKNRRLTWEYC -> TGRSVSSPATASMRPCPLSIRSG	VSP_005411
SITE	512	512	1	IMPORTANT FOR SINGLE-CHAIN ACTIVITY.	
SITE	464	464	1	[<u>GlycoSuiteDB</u>]. IMPORTANT FOR SINGLE-CHAIN ACTIVITY.	
CARBOHYD	483	483		N-LINKED (GLCNAC) (IN TYPE I AND II VARIANTS)	CAR_000031

Features, continued

Representing variations: variants, splice variants, mutagenesis and sequence conflicts

HELIX	553 559	7				
Sequence info						
Length: 562 AA the unprocessed		th of Molecula MW of th	r weight: 6291 7 1e unprocessed p		CRC64: B7EC9B1A on the sequence]	5E3FDC4D [T
10	20	30	40	50	60	
MDAMKRGLCC	 VLLLCGAVFV	 SPSQEIHARF	 RRGARSYQVI	 CRDEKTQMIY	 QQHQSWLRPV	
70	80	90	100	110	120	
LRSNRVEYCW	 CNSGRAQCHS	 VPVKSCSEPR	 CFNGGTCQQA	 LYFSDFVCQC	 PEGFAGKCCE	
130	140	150	160	170	180	
IDTRATCYED	 QGISYRGTWS	 TAESGAECTN	 WNSSALAQKP	 YSGRRPDAIR	 LGLGNHNYCR	
190	200	210	220	230	240	
NPDRDSKPWC	 YVFKAGKYSS	 EFCSTPACSE	 GNSDCYFGNG	 SAYRGTHSLT	 ESGASCLPWN	
250	260	270	280	290	300	
SMILIGKVYT	 AQNPSAQALG	 LGKHNYCRNP	 DGDAKPWCHV	 LKNRRLTWEY	 CDVPSCSTCG	
310	320	330	340	350	360	
LRQYSQPQFR	 IKGGLFADIA	 SHPWQAAIFA	 KHRRSPGERF	LCGGILISSC	 WILSAAHCFQ	
370	380	390	400	410	420	
ERFPPHHLTV	 ILGRTYRVVP	 Geeeqkfeve	 KYIVHKEFDD	 DTYDNDIALL	 QLKSDSSRCA	
430	440	450	460	470	480	
QESSVVRTVC	 LPPADLQLPD	 WTECELSGYG	 KHEALSPFYS	 ERLKEAHVRL	 YPSSRCTSQH	

The Human Proteomics Initiative HPI

- Annotation of all known human proteins;
- Annotation of mammalian orthologs of human proteins;
- Annotation of all known human polymorphisms at the protein sequence level;
- Annotation of all known post-translational modifications in human proteins;
- Tight links to structural information.

Current state of human protein information in Swiss-Prot

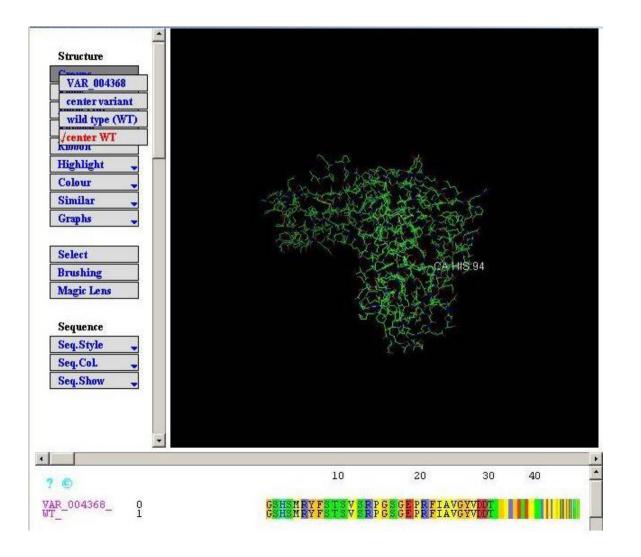
- 10'600 annotated human sequences;
- Associated with about 27'000 distinct literature references;
- 25'000 experimental or predicted posttranslational modifications;
- 4'000 splice variants;
- 18'000 polymorphisms (most of which are linked with disease states).

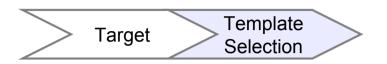
Protein Polymorphisms

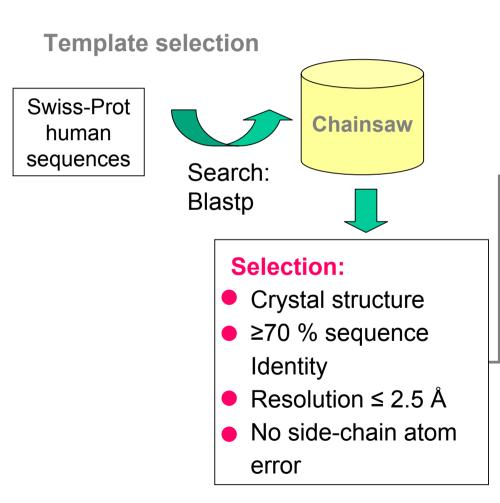
- Called 'c-SNPs' (coding single nucleotide polymorphisms) or 'SAPs' (single amino-acid polymorphisms);
- Mutations that cause major changes to a protein sequence (such as frameshift mutations) are not considered to be relevant to Swiss-Prot, as their deleterious effect on a given protein's function is usually obvious.

FT dementing Gerstmann-Stra	aussler disease).
FT /FTId=VAR_006466.	
FT VARIANT 129 129 M -> V (polymorphism; de	etermines the
FT disease phenotype in pat	ients who have a
FT PrP mutation at position	n 178. Patients
FT with M-129 develop FFI,	those with V-129
FT develop CJD; dbSNP:17999	990).
FT /FTId=VAR_006467.	
FT VARIANT 131 131 $G \rightarrow V$ (in GSD).	
FT /FTId=VAR_014264.	
FT VARIANT 171 171 N -> S (in schizoaffecti	ve disorder).
FT /FTId=VAR_006468.	
FT VARIANT 178 178 D \rightarrow N (in FFI and CJD).	
FT /FTId=VAR_006469.	
FT VARIANT 180 180 V -> I (in CJD).	
FT /FTId=VAR_006470.	
FT VARIANT 183 183 T -> A (in familial spor	ngiform
FT encephalopathy).	
FT /FTId=VAR_006471.	

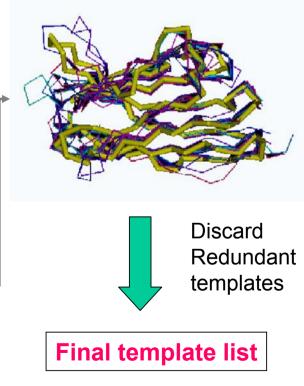
Swiss-Prot variant: VAR_009543 in P53634

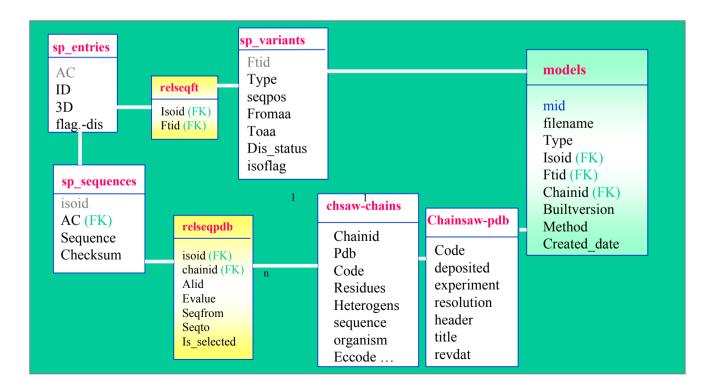

[General Information] [Information on the variant] [Structural Information on the variant] [References for the variant] [Cross references for the variant] [the variant]


Note: Most headings are clickable, even if they don't appear as links. They link to the user manual or other documents. General information Swiss-Prot ID (AC) CATC HUMAN (P53634) Official: CTSC Gene symbol(s) Synonym(s): CPPI Chromosomal location 11q14.1-q14.3 Genew HGNC: 2528 Protein name Dipeptidyl-peptidase I [Precursor] Length of the protein 463 Information on the variant FTId VAR 009543 Amino acid position of the variant 272 **Residue** change From Arg (R) to Pro (P), R272P Status Disease (Disease, polymorphism or unclassified) Papillon-Lefevre syndrome (PLS) Defects in CTSC are a cause of Papillon-Lefevre syndrome (PLS) [MIM:245000]; also known as keratosis palmoplantaris with periodontopathia. PLS is an autosomal recessive disorder that is mainly ascertained by dentists because of the severe periodontitis that afflicts patients. Both the deciduous and permanent dentitions Disease are affected, resulting in premature tooth loss. Palmoplantar keratosis, varying from mild psoriasiform scaly skin to overt hyperkeratosis, typically develops within the first three years of life. Keratosis also affects other sites such as elbows and knees Comment None Structural information on the variant 252 QASCGSCYSFASMGMLEARI R ILTNNSQTPILSPQEVVSCS 292 Location on the sequence To Length Description Key From Protein features in neighborhood CHAIN 231 394 164 DIPEPTIDYL-PEPTIDASE I BETA CHAIN Residue conservation Alignment from Blast search Physico-chemical property Change from large size and basic (R) to medium size and hydrophobic (P) Model Visualization **Template Structure** ExPASy 1K3BB [ExPASy / EBI-MSD] AstexViewer 3D homology models Disclaimer: The result of any modelling procedure is non-experimental and must be considered with care. This is especially true since there is no human intervention during model building process. References for the variant [1] VARIANTS PLS PHE-249; LEU-252; PRO-272; SER-301; CYS-339 AND CYS-347. MEDLINE=20047769; PubMed=10581027; [NCBI, ExPASy, EBI, Israel, Japan] Toomes C., James J., Wood A.J., Wu C.L., McCormick D., Lench N., Hewitt C., Moynihan L., Roberts E., Woods C.G., Markham A., Wong M., Widmer R., Ghaffar K.A., Pemberton M., Hussein I.R., Temtamy S.A., Davies R., Read A.P., Sloan P., Dixon M.J., Thakker N.S. "Loss-of-function mutations in the cathepsin C gene result in periodontal disease and palmoplantar keratosis." Nat. Genet. 23:421-424(1999) [2] VARIANTS PLS PRO-127; PRO-272; CYS-339 AND CYS-429, AND VARIANTS ILE-153 AND LYS-401. MEDLINE=21884204; PubMed=11886537; [NCBI, ExPASy, EBI, Israel, Japan] Lefevre C., Blanchet-Bardon C., Jobard F., Bouadiar B., Stalder J.-F., Cure S., Hoffmann A., Prud'Homme J.-F., Fischer J. "Novel point mutations, deletions, and polymorphisms in the cathepsin C gene in nine families from Europe and North Africa with Papillon-Lefevre syndrome." J. Invest. Dermatol. 117:1657-1661(2001) Cross-references for the variant OMIM 245000 [NCBI / EBI] dbSNP Not available HGVbase Not available


For more information on the content of this page, please have a look at the documentation

Specialized database Not available


Visualisation of 3D models



Template superposition

The ModSNP database

- Routine update
 - According to PDB, Swiss-Prot entries
- Automatic generation of high-quality homology models

ModSNP: a basis for a large-scale structural analysis of protein variants

- Main advantages:
 - Large number of models;
 - Each variants are classified into disease-related, polymorphism, or unclassified according to Swiss-Prot annotation;
 - Routine automatic update

The Swiss-Prot staff at **SIB** and EBI

• Group leaders: Amos Bairoch, Rolf Apweiler

•

- Annotators/curators: Philippe Aldebert, Andrea Auchincloss, Ghislaine Argoud Puy, Kristian Axelsen, Kirsty Bates, Margaret Biswas, Marie-Claude Blatter, Brigitte Boeckmann, Silvia Braconi Quintaje, Paul Browne, Evelyn Camon, Danielle Coral, Elisabeth Coudert, Tania de Oliveira Lima, Kirill Degtyarenko, Sylvie Dethiollaz, Ruth Eberhardt, Anne Estreicher, Livia Famiglietti, Nathalie Farriol-Mathis, Serenella Ferro, Gill Fraser, John Garavelli, Raffaella Gatto, Vivienne Gerritsen, Arnaud Gos, Nadine Gruaz-Gumowski, Ursula Hinz, Chantal Hulo, Nicolas Hulo, Janet James, Florence Jungo, Vivien Junker, Youla Karavidopoulou, Guillaume Keller, Maria Krestyaninova, Kati Laiho, Petra Langendijk-Genevaux, Minna Lehvaslaiho, David Lonsdale, Michele Magrane, Karine Michoud, Virginie Mittard, Madelaine Moinat, Nicola Mulder, Claire O'Donovan, Sandra Orchard, Sandrine Pilbout, Sylvain Poux, Manuela Prüss, Sorogini Reynaud, Catherine Rivoire, Bernd Röchert, Michel Schneider, Christian Sigrist, André Stutz, Shyamala Sundaram, Michael Tognoli, Elmar von Baum, Sandra van den Broek, Eleanor Whitfield
 - Programmers and system administrators: Daniel Barrell, David Binns, Laurent Bollondi, Sergio Contrino, Michael Darsow, Edouard deCastro, Séverine Duvaud, Stephanie Federico, Alexander Fedetov, Astrid Fleischmann, Wolfgang Fleischmann, Elisabeth Gasteiger, Alain Gateau, Andre Hackmann, Henning Hermjakob, Ivan Ivanyi, Eric Jain, Alexander Kanapin, Paul Kersey, Ernst Kretschmann, Corinne Lachaize, Maria-Jesus Martin, Xavier Martin, John O 'Rourke, Tom Oinn, Isabelle Phan, Astrid Rakow, Nicole Redaschi, Kai Runte, Florence Servant, Allyson Williams, Dan Wu
- Research staff: Pavel Dobrokhotov, Alexandre Gattiker, Margus Luk, Anne Morgat, Violaine Pillet, Anne-Lise Veuthey, Lina Yip
- Clerical and secretarial assistance: Veronique Mangold, Claudia Sapsezian, Margaret Shore-Nye, Laure Verbregue

